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around the earth's curvature by the tenuous atmosphere (see
Ref. 9). Ivanov attributes these effects to a shock wave
generated by the explosion impinging on the ionosphere al-
though he recognizes some inadequacies in this explanation.
He appears to overlook one important fact which we pointed
out.' The directions of the magnetic disturbance vectors at
significant stations are compatible with a current sheet ex-
tending more than 2000 km from the explosion point, but are
incompatible with magnetic effects due to currents limited to
distances less than 1250 km from the origin, such as would
have been produced by the shock wave.

For this reason the reviewer believes that the shock wave
hypothesis is an inadequate explanation for the effects as-

sociated with these events, although it may suffice for ex-
planation of that of the Christmas Island event and the
Tunguska meteorite effect.

It is not unlikely that several mechanisms were involved,
just as it is apparent that the effects at Apia were due to
charged particles traveling along the lines of the earth's mag-
netic field. Perhaps when the effects of more recent ex-
plosions have been carefully studied our understanding of
the phenomena will be improved.

—A. G. McNisn
Metrology Division

National Bureau of Standards
Washington, D. C.
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Combination of the Monte Carlo Method with the Method
of Steepest Descents for the Solution of Certain

Extremal Problems
L. S. GURIN AND V. P. LOB AC

IN the report1 at the All-Union Conference on Computa-
tional Mathematics and Computational Technology

(Moscow, November 1959) two methods were presented
which permitted a significant reduction in the number of runs
required in finding extreme values of a function of many
variables by the Monte Carlo method. These were a com-
bination of the Monte Carlo method with the classical meth-
ods of analysis and a combination of the Monte Carlo method
with linear programming. Both methods were illustrated
with concrete examples.

In the present note a third method will be illustrated with a
concrete problem: a combination of the Monte Carlo method
with the method of steepest descents.

1. Statement of the Problem

Let there be given in the plane n ^ 3 points with coordi-
nates (Xi,yd (i = 1,2,... ,n), not all lying on a single straight
line, and n positive numbers k^. It is required to find m
centers (m < n) with coordinates (aj,bj) (j = 1,2,.. .,m)
which will minimize the function

>6i,a2,62,... ,am,bm) =
n _____

]C fa V(Xi - + fa - (D

which is constructed as follows.
Each point (z,-,2/») is attached to the nearest of the points

(aj,bj)} which is denoted in the foregoing by (o#o,6#»)). If
the distance from the point (xi}yt) takes on its minimum at
several (say p) of the points (ajjbj), it is then attached to each
of these points, and enters the sum [Eq. (1) ] p times with co-
efficient ki/p. In the case m = 1 the problem reduces to the

Translated from Zhurnal Vychislitel'noi Matematiki i Mate-
maticheskoi Fiziki (Journal of Numerical Analysis and Mathe-
matical Physics) 2, No. 3, 499-502 (1962). Translated by War-
ren S. Loud, Professor of Mathematics, University of Minnesota.

well-known Steiner problem, the solution of which we shall
briefly discuss.

2. Solution of the Problem in the Case m = 1

In this case it is easy to see that the function/(a, 6) is con-
vex, and that there exists a unique solution of the problem,
the Steiner point (oo,60). Here the solution may be general
or singular. We call a solution singular if the point
coincides with one of the original points (Xi,yt).

In case the solution is general, it satisfies the conditions

5/(a,6) = 0

If the solution is singular, for example a0 = xio, bQ =
then have

(2)

we

where

ft, = - fcio V(o - (6 - (4)

To solve the problem in the case m = 1 we use the follow-
ing algorithm, which is based on the method of steepest de-
scents. As an initial point we take the center of gravity of
the given system of points. We are given an initial step A0,
and move in the direction opposite to the gradient of /(a,b) at
the initial point.

We move from the point a step A0 in the direction opposite
to the gradient. If at the point thus reached, r» ^ e (where
TV is the distance from the point (xl,yi] and e is a sufficiently
small positive number), we check the point (#»,2/») to see
whether condition (3) is satisfied. If (3) is satisfied, the
problem is solved. Otherwise, we take the point 0&»-,2/») as
initial point. If there is no i such that r»- ^ e, we check to
see whether the condition

|grad/(a,6) |<6 (5)
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is satisfied. If Eq. (5) holds, the problem is solved. Other-
wise we determine the direction opposite to the gradient at
the new point. Let it make an angle Ay with the direction
stored in the memory. Then

a) if

AT < 45° + (6)

where d is a sufficiently small number, the motion proceeds
with the same step length in the old direction;

b) if

AT > 90° - 6 (60

we divide the step by two, and go in the opposite direction;
c) If neither of conditions (6) and (6;) is fulfilled, we move

in the new direction opposite to the gradient.
It can be shown that in a finite number of steps the process

terminates, with either (3) or (5) fulfilled. This gives the
solution to the problem. The condition that each time the
direction changes it is through an angle

AT =- 45° + d

insures the following property of the descent trajectory: a
point (a;*,?/*) which is not the solution of the problem cannot
be approximated arbitrarily closely. This reduces the time
of solution of the problem.

The algorithm just described has been programmed for
machine use, and a number of problems have been solved
using it. If the maximal distance between points (xi,yi)
is taken as a unit, it is recommended that A0 = 0.1 and e =
0.0001. A smaller step only increases the number of itera-
tions, and similarly a decrease in e increases the number of
iterations and increases the accuracy only slightly. Already
for e = 0.0001, as is shown by comparison with e = 0.000001,
the error in determining the center does not exceed 0.0001,
and the error in determining min /(a, b) does not exceed
0.000001.

The solution time of the problem for 10-20 points with
such accuracies is roughly 1-2 sec.

3. Solution of the Problem in the General Case

In the general case m > 1, we solve the problem by the
Monte Carlo method in combination with the method set
forth above. We take m randomly placed centers as initial
positions and improve them by a series of iterations. Each
iteration consists of two steps: 1) attaching the points
(Xi,yi) to the centers obtained at the previous iteration, and 2)
shifting each center by the method set forth in Sec. 2, so as to
minimize the weighted sum of its distances from the attached
points.

As is shown by experiment, after several iterations (the
number of iterations is as large as 9 only in very exceptional
cases) the centers become fixed. As for the sum of distances
obtained in the process, it must converge since it decreases at
each iteration.

However, in contrast to the case m = 1, the general prob-
lem has a number of local minima. Therefore it is necessary
to take many initial arrangements of the centers, and from
among the improved arrangements obtained by iteration to
choose those which give the least values of the function.
The process is continued until the least value of the function
is repeated several times, and the more times it is repeated,
the greater is the probability that we have actually obtained
the least value.

We shall give the results of the solution for three examples.
Each example was run for 10-11 min by the method set forth,
and for roughly the same time by the Monte Carlo method
without steepest descents. Analysis of .the results obtained
leads to some qualitative conclusions.

Example 1: n = 10, m = 3. The combined method was
run 84 times, and 14 local minima were discovered. The
values obtained were:

frmin No. of times
68.34
69.14
72.11

7
17

The remaining local minima gave values at most 5% in
excess of /min. Each minimum corresponded to a definite
position for the centers.

The usual Monte Carlo method made 4116 runs in the
same period of time. Here there was achieved

/min' = 75.25

which gives an error of roughly 10%.
The further values obtained were distributed as follows:

f No. of times
75-80
80-85
85-90

23
79

130

etc. Thus if an accuracy of better than 10% is required, it
can be obtained in the time indicated only by the combina-
tion of methods. If we are allowed an error of the order of
17%, then the combination of methods (77 runs out of 84) is
better than the usual method (23 runs out of 4116). If an
error of the order of 25% is allowed, the combination of
methods is still better (83 runs out of 84 as against 102 out of
4116).

Example 2. n = 30, m = 3 (points were distributed in a
nonuniform manner throughout a region.) In 10 minutes 40
runs were made with the combination of methods, with the
results:

/mm No. of times
316.3
331.8
335.8
345.6

27
5
1
7

With the usual Monte Carlo method, 868 runs were made in
6 min with the result:

/min' = 353.2
which gives an error of the order of 11%.

Example 3. n = 50, m = 3 (points distributed relatively
uniformly). In 10 min 31 runs were made with the combina-
tion of methods with results:

/min No. of times
660.7-660.98
661.5-662
664.1-665.96
670.9
690 and above

7
2

16
4
2

With the usual method 1113 runs (in roughly 10 min) gave:
/min' = 677.7
/ < 690 5 times

In this case, because of the relatively uniform distribution
of the points, the minima were less sharply expressed, and
the error of the usual method was 2.6%. But if the time of
calculation is reduced by a factor of 10, the error with the
combination of methods does not exceed 1%, whereas the
error with the usual method exceeds 5%.

Thus in this case also the combination of methods is cer-
tainly to be preferred.

We note that the time necessary is almost independent of
the number of points n. For large numbers of points we may
make a preliminary grouping, considering several closely
distributed points as one, located at the center of gravity
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of the group, and summing the corresponding coefficients &*.
Application of such a method to example 3 showed that the
accuracy of the solution remained satisfactory, while the time
necessary was reduced insignificantly.

—Received February 2} 1961
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Reviewer's Comment

The problem discussed here has been relegated mostly to
mathematical recreations in the western literature, although
it has appeared in serious (oral) discussions as a "warehouse
location" problem: given n points in the plane, find m
points—"centers" or "distribution centers"— such that, if
each of the points is joined to some center by a line segment,
the sum of the lengths of the segments is minimized. An
account of the problem, due to Steiner, for m = 1 is given in
What Is Mathematics by Courant and Robbins (Oxford Uni-
versity Press, New York, 1941), in which it is remarked |hat
the general problem does not lead to interesting (theoretical)
results. However, this problem remains useful in applica-
tions.

The problem is a discrete-nonlinear programming problem
and could, in principle, be solved exactly by some recent ex-
tensions of current methods for discrete programming prob-
lems. The discrete feature is handled here, however, in what
is probably the best practical way, by the "Monte Carlo" de-
vice of selecting a group of centers at random and assigning

each point to the nearest center. The nonlinear portion is
handled by an ordinary gradient method, although the
authors' device of insuring that the gradient direction al-
ways changes by at least 45° so that "a point which is not the
solution of the problem cannot be approximated arbitrarily
closely" is new. Since, however, the function being mini-
mized is convex, it does not seem that that difficulty could
arise here, but the device is interesting in general. It is un-
fortunate that evidence for a reduction of solution time is not
cited, and that the computer used is not described so that the
meaning of the cited solution times can be understood.

The problem of finding a single center has a neat mechani-
cal analogue. It is the equilibrium position of a point acted
on by n unit forces, each of magnitude kf directed toward the
ith given point. A system of string, weights, and pulleys
embodying this principle would probably be an effective
alternative means of solving this problem.

—PHILIP WOLFE
The Rand Corporation

Santa Monica, California
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Nonsteady Propagation of Cracks, G. I. Barenblatt, R. L.
Salganik, and G. P. Cherepanov, pp. 469-477.

Investigations of the processes of crack propagation have
continued now for a considerable period of time, and it would be
fair to say that in the field of stationary propagation of cracks the
investigations have more or less reached completion.

One of the simplest problems of nonstationary propagation of
cracks would appear to be the problem of the widening at constant
velocity of a rectilinear crack in a uniform stress field perpen-
dicular to the line of the crack. This problem has been inves-
tigated by a number of authors, starting with Mott, but it was
not until the paper by Broberg that it was treated as a problem of
the dynamic theory of elasticity. Broberg, however, neglected
the effect of cohesive forces, and for this, reason came to the
conclusion that the uniform propagation of cracks can take place
only at a velocity equal to the velocity of propagation of Rayleigh

surface waves: at any other velocity an uncompensated singular
ity occurs in the stress field at the end of the crack.

The present paper investigates on the basis of certain assump-
tions the effect of cohesive forces and derives an equation which
defines the velocity of propagation of a crack in terms of the
applied stress. It is shown that for every material there is a
certain minimum velocity of stable uniform crack propagation.
It is also shown that the velocity of stable propagation of a crack
increases with increase in the splitting force and tends to the
Rayleigh velocity: it would appear that in isotropic bodies the
formation of a regime of uniform propagation at the Rayleigh
velocity is prevented by the occurrence of branching of the crack.

Formulation of Refined Theories of Plates and Shells, I. G.
Teregulov, pp. 495-502.

The attempt to refine theories of plates and shells was started
in other studies, and at the present time many papers are devoted
to this problem. These papers usually use one of a number of
assumptions. A survey of them is beyond the scope of this note.
We mention only the papers in which a certain error is specified
at the outset, for example, of the order of 7i4/Z/4 compared to
unity (2h is the thickness and L is the transverse dimension of
the plate) and the differential equations corresponding to this
accuracy are obtained. Boundary conditions to within this


